Experimental Evaluation of Bounded-Depth LSM
Merge Policies

Qizhong Mao!, Steven Jacobs?, Waleed Amjad?, Vagelis Hristidis* Vassilis J. Tsotras’, Neal E. Young®
Computer Science and Engineering, University of California, Riverside, USA
Email: { 1qmao002, 2sjaco002, 3wamja001, *evangelo, vtsotras, ®neal.young }@ucr.edu

Abstract—Modern NoSQL databases use log-structured merge
(LSM) storage architectures to support high write throughput.
LSM architectures aggregate writes in a mutable MemTable
(stored in memory), which is regularly flushed to disk, creating
a new immutable file called an SS7able. Periodically, some of
the SSTables are chosen to be merged — replaced with a single
SSTable containing their union. A merge policy (a.k.a. compaction
policy) specifies when to do merges and which SSTables to
combine. A bounded depth merge policy is one that guarantees
that the number of SSTables never exceeds a given parameter
k, typically in the range 3-10. Bounded-depth policies are useful
in applications where low read latency is crucial, but they and
their underlying combinatorics are not yet well understood.
This paper compares several bounded-depth policies, including
representative policies from industrial NoSQL databases and
two new ones based on recent theoretical modeling. The results
validate the proposed theoretical model and show that, compared
to the existing policies, the newly proposed policies can have
substantially lower write amplification.

Index Terms—NoSQL, LSM, merge policy, compaction

I. INTRODUCTION

Modern NoSQL systems [1], [2] use log-structured-merge
(LSM) architectures [3] to achieve high write throughput.
To insert a new record, a WRITE operation simply inserts
the record into the memory-resident MemTable [2] (also
called the in-memory component). UPDATE operations are
implemented lazily, requiring only a single WRITE to the
MemTable. DELETE operations are implemented similarly, by
writing an anti-matter record for the key to the MemTable.
Thus, each WRITE, UPDATE, or DELETE operation avoids
any immediate disk access. When the MemTable reaches its
allocated capacity (or for other reasons), it is flushed to disk,
creating an immutable disk file called a component, or, usually,
an SSTable (Sorted Strings Table [2]). This process continues,
creating many SSTables over time.

Each READ operation searches the MemTable and SSTables
to find the most recent value written for the given key. With a
compact index stored in memory for each SSTable, checking
whether a given SSTable contains a given key typically takes
just one disk access [4, §2.5]. (For small SSTables, this access
can sometimes be avoided by storing a Bloom filter for the
SSTable in memory [5].) Hence, the time per READ grows with
the number of SSTables. To control READ costs, the system
periodically merges SSTables to reduce their number and to
prune updated and anti-matter records. Each merge replaces
some subset of the SSTables by a single new SSTable that

978-1-7281-0858-2/19/$31.00 (© 2019 IEEE

holds their union. The merge batch-writes these items to the
new SSTable on disk. The write amplification is the number
of bytes written by all merges, divided by the number of bytes
inserted by WRITE operations.

A merge policy (also known as a compaction policy) de-
termines how merges are done. The policy must efficiently
trade off total write amplification for total read cost (which
increases with the average SSTable count). This paper focuses
on what we call bounded depth policies — those that guarantee
a bounded number of disk accesses for each READ operation
by ensuring that, at any given time, the SSTable count (the
number of existing SSTables) never exceeds a given parameter
k, typically 3-10. Maintaining bounded depth is important in
applications that require low read latency, but bounded-depth
policies are not yet well understood.

A recent theoretical work by Mathieu et al. [6] (including
one of the current authors) formally defines a broad class of so-
called stack-based policies (see Section IV for the definition).
This class includes policies of many popular NoSQL systems,
including Bigtable [2], HBase [7], [8], [9], Accumulo [10],
[9], Cassandra [11], Hypertable [12], and AsterixDB [13].
In contrast, leveled policies (used by LevelDB and its spin-
offs [14]) split SSTables by key-space to avoid monolithic
merges, so they do not fit the stack-based model. Note that all
current leveled implementations yield unbounded depth, hence
they are not considered here.

Mathieu et al. also propose theoretical metrics for policy
evaluation, and, as a proof of concept, propose new policies
that, among stack-based policies, are optimal according to
those metrics. Two such policies, MINLATENCY and BI-
NOMIAL (defined in Section III) are bounded-depth policies
designed to have minimum worst-case write amplification
(subject to the depth constraint) among all stack-based poli-
cies. Mathieu et al. observe that, according to the theoretical
model, on some inputs existing policies are far from opti-
mal, so, on some common workloads, compared to existing
policies, MINLATENCY and BINOMIAL can have lower write
amplification.

Here we empirically compare MINLATENCY and BINO-
MIAL to representative bounded-depth policies from state-
of-the-art NoSQL databases: a policy from AsterixDB [15],
EXPLORING (the default policy for Apache HBase [16]), and
the default policy from Bigtable (as described by Mathieu
et al. [6], which includes authors from Google). Section III
defines these policies. We implement the policies under con-

sideration on a common platform — Apache AsterixDB [13],
[15], — and evaluate them on inputs from the Yahoo! Cloud
Serving Benchmark (YCSB) [17], [18]. This is the first imple-
mentation and evaluation of the policies proposed by Mathieu
et al. on a real NoSQL system. The empirical results validate
the theoretical model. MINLATENCY and BINOMIAL achieve
write amplification close to the theoretical minimum, thereby
outperforming the other policies by orders of magnitude on
some realistic workloads. (See Section V.)

Having a realistic theoretical model facilitates merge-policy
design both via theoretical analysis (as for MINLATENCY
and BINOMIAL), and because it enables rapid but faithful
simulation of experiments. NoSQL systems are designed to run
for months, incorporating hundreds of terabytes. Experiments
can take weeks, even with appropriate adaptations. In contrast,
the model allows some experiments to be faithfully simulated
in minutes. (See Section VI.)

In summary, this work makes the following contributions:

1) The implementation of several existing and recently
proposed merge policies on a common, open-source
platform, specifically Apache AsterixDB.

2) An experimental evaluation confirming that the recently
proposed policies can significantly outperform the state-
of-the-art policies on some common workloads.

3) An empirical validation of a realistic cost model, which
facilitates the design of merge policies via theoretical
analysis and rapid simulation.

II. RELATED WORK

Historically, the main data structure used for on-disk key-
value storage is the BT -tree. Nonetheless, LSM architectures
are becoming common in industrial settings. This is partly
because they offer substantially better performance for write-
heavy workloads [19]. Further, for many workloads, reads are
highly cacheable, making the effective workload write-heavy.
In these cases, LSM architectures substantially outperform
BT -trees.

In 2006 Google released Bigtable [20], [2], now the primary
data store for many Google applications. Its default merge
policy is a bounded-depth stack-based policy. We study it here.
Spanner [21], Google’s Bigtable replacement, likely uses a
stack-based policy, though details are not public.

Apache HBase [16], [8], [7] was introduced around 2006,
modeled on Bigtable, and used by Facebook 2010-2018. Its
default merge policy is EXPLORING, the precursor of which
was RATIOBASED, a variant of BIGTABLE. Both policies
are configurable as bounded-depth policies. Here we report
results only for EXPLORING, as it consistently outperformed
RATIOBASED.

Apache Cassandra [22], [11] was released by Facebook in
2008. Its first main merge policy, SIZETIERED, is a stack-
based policy that orders the SSTables by length, groups
similar-length SSTables, and then merges a group that has
sufficiently many SSTables. SIZETIERED is not stable — that
is, it does not maintain the following property at all times:
the WRITE times of all items in any given SSTable precede

those of all items in every newer SSTable. With a stable
policy, a READ can scan the recently created SSTables first,
stopping with the first SSTable that contains the key. Unstable
policies lack this advantage: a READ operation must check
every SSTable. Apache Accumulo [10], which was created
in 2008 by the NSA, uses a similar stack-based policy. We
don’t test these policies here, as our test platform supports
only stable policies, and we believe they behave similarly to
BIGTABLE or EXPLORING.

Previous to this work, our test platform — Apache
AsterixDB — provided just one bounded-depth policy
(CONSTANT), which suffered from high write amplifica-
tion [23]. AsterixDB has removed support for CONSTANT,
and, based on the preliminary results here, added support for
BINOMIAL.

Leveled policies: LevelDB [14], [24] was released by
Google in 2011. Its merge policy, unlike the policies men-
tioned above, does not fit the stack-based model. For our
purposes, the policy can be viewed as a modified stack-based
policy where each SSTable is split (by partitioning the key
space into disjoint intervals) into multiple smaller SSTables
that are collectively called a level (or sorted run). Each READ
operation needs to check only one SSTable per level — the
one whose key interval contains the given key. Using many
smaller tables allows smaller, “rolling” merges, avoiding the
occasional monolithic merges required by stack-based policies
(but see [25, §3.2]).

In 2011, Apache Cassandra added support for a leveled
policy adapted from LevelDB. (Cassandra also offers merge
policies specifically designed for time-series workloads.) In
2012, Facebook released a LevelDB fork called RocksDB [26],
[27]. RocksDB offers several policies: one modelled on Lev-
elDB, UNIVERSALCOMPACTION (a stack-based policy similar
to Cassandra’s SIZETIERED), and hybrids.

None of the leveled policies are bounded-depth policies.

Other merge-policy models and optimizations: Indepen-
dently of Mathieu et al. [6], Lim et al. [28] propose a similar
theoretical model for write amplification and point out its
utility for simulation. The model includes a statistical estimate
of the effects of for UPDATEs and DELETEs. For leveled
policies, Lim et al. use their model to propose tuning various
policy parameters — such as the size of each level — to
optimize performance. Dayan et al. [5], [29] propose further
optimizations of SIZETIERED and leveled policies by tuning
aspects such as the Bloom filters’ false positive rate (vs. size)
according to SSTable size, the per-level merge frequency, and
the memory allocation between buffers and Bloom filters.

Multi-threaded merges (exploiting SSD parallelism) are
studied in [30], [31], [27], [32]. Cache optimization in leveled
merges is studied in [33]. Offloading merges to another server
is studied in [34].

Some of the methods above optimize READ performance;
those complement the optimization of write amplification
considered here. None of the above works consider bounded-
depth policies.

This paper focuses primarily on write amplification (and
to some extent read amplification). Other aspects of LSM
performance, such as space amplification, can also be affected
by merge policies but are not discussed here. For a more de-
tailed discussion of LSM architectures, including compaction
policies, see [35].

III. POLICIES STUDIED IN THIS PAPER

Bigtable (Google): The default for the Bigtable platform
is as follows [6]. When the MemTable is flushed, if there are
fewer than k SSTables, add a single new SSTable holding the
MemTable contents. Otherwise, merge the MemTable with the
i most recently created SSTables, where 1 is the minimum such
that, afterwards, the length of each SSTable exceeds the sum
of the lengths of all newer SSTables.! Roughly speaking, this
ensures that each SSTable is at most half the length of the
next older SSTable. We denote this policy BIGTABLE.

Exploring (Apache HBase): EXPLORING is the default
for HBase [16]. In addition to k, it has configurable parameters
A (default 1.2), C (default 2), and D (default 10). When the
MemTable (Memstore in HBase) is flushed, the policy orders
the SSTables (HFiles in HBase) by time of creation, considers
various contiguous subsequences of them, and merges one that
is in some sense most cost-effective. Specifically: Temporarily
add the MemTable as its own (newest) SSTable, then consider
every contiguous subsequence s such that

1) s has at least C and at most D SSTables, and
2) in s, the length of the largest SSTable is at most \ times
the sum of the lengths of the other SSTables.

In the case that there is at least one such subsequence s,
merge either the longest (if there are at most k SSTables) or
the one with minimum average SSTable length (otherwise).
In the remaining case, and only if there are more than k
SSTables, merge a contiguous subsequence of C SSTables
having minimum total length.

Constant (AsterixDB before version 0.9.4): CONSTANT
is as follows. When the MemTable is flushed, if there are
Sfewer than k SSTables, add a single new SSTable holding the
MemTable contents. Otherwise, merge the MemTable and all
k SSTables into one.

Next are the (somewhat cryptic!) definitions of the MIN-
LATENCY and BINOMIAL policies proposed by Mathieu et
al. First, define a utility function B, as follows. Consider any
binary search tree T with nodes {1,2,...,n} in search-tree
order (each node is larger than those in its left subtree, and
smaller than those in its right subtree). Given a node ¢ in 7',
define its stack (merge) depth to be the number of ancestors
smaller (larger) than ¢. (Hence, the depth of ¢ in 7" equals its
stack depth plus its merge depth.)

Fix any two positive integers k and m, and let n = (%) —
1. Let 7*(m, k) be the unique n-node binary search tree on
nodes {1,2,...,n} that has maximum stack depth k¥ — 1 and

The implementation of this and other policies may temporarily create an
SSTable holding the MemTable contents, and then merge that SSTable with
the other SSTables.

maximum write depth m — 1. For ¢t € {1,2,...,n}, define
B(m, k,t) to be the stack depth of node ¢ in 7.

Compute the function B(m,k,t) via the following recur-
rence. Define B(m, k,0) to be zero, and for ¢t > 0 use

- B(m —1,k,t) if ¢t < (MY,
(m, k) = 1+B(m7k— 1,t— (m+,§—1)> if £ > ("R,

The policies are defined as follows.

MinLatency (Mathieu et al.): For each t = 1,2,..., in
response to the tth flush, the action of the policy is determined
by ¢, as follows:

Let m' = min{m : (m;k) >t} and i = B(m/, k,t). Order
the SSTables by time of creation, and merge the ith oldest
SSTable with all newer SSTables and the flushed MemTable
(leaving © SSTables).

Binomial (Mathieu et al.): For each t = 1,2,..., in
response to the tth flush, the action of the policy is determined
by ¢, as follows:

Let Tk(m) _ Z;T;l (i+mingi,k)—1)
Tk (m) Z t}.

Leti = 1+B(m/,min(m’, k)—1,t—Ti(m'—1)—1). Order
the SSTables by time of creation, and merge the ith oldest
SSTable with all newer SSTables and the flushed MemTable
(leaving 1 SSTables).

As described in Section IV, these policies are designed
carefully to have the minimum possible worst-case write
amplification among all policies in the aforementioned class
of stack-based policies.

BIGTABLE and (although it is not obvious from its specifi-
cation) MINLATENCY are lazy — whenever the MemTable
is flushed, if there are fewer than k SSTables, the policy
leaves those SSTables unchanged, and creates a new SSTable
holding just the flushed MemTable’s contents. For this reason,
these policies tend to keep the number of SSTables close to
k. In contrast, for moderate-length runs (4% or fewer flushes,
as discussed later), EXPLORING and BINOMIAL often merge
multiple SSTables even when fewer than k SSTables are
already present, so may keep the average number of SSTables
well below k, potentially allowing faster READ operations.

and m’ = min{m :

IV. DESIGN OF MINLATENCY AND BINOMIAL

This section reviews Mathieu et al’s definition of the class
of so-called stack-based merge policies, the worst-case write
amplification metric, and how MINLATENCY and BINOMIAL
are designed to minimize that metric among all policies in that
class.

A. Bounded-depth stack-based merge policies

Informally, a stack-based policy must maintain a set of
SSTables over time. The set is initially empty. At each time
t=1,2,...,n,the MemTable is flushed, having current length
in bytes equal to a given integer ¢, > 0. In response, the
merge policy must choose some of its current SSTables, then
replace those chosen SSTables by a single SSTable holding
their contents and the MemTable contents. As a special case,
the policy may create a new SSTable from the MemTable

contents alone. (The policy may replace additional sets of
SSTables by their respective unions, but the policies studied
here don’t.)

Each newly created SSTable is written to disk, batch-writing
a number of bytes equal to its length, which by assumption
is the sum of the lengths of the SSTables it replaces, plus
¢, if the merge includes the flushed MemTable. (This ignores
UPDATEs and DELETES, but see the discussion below.)

A bounded-depth policy (in the context of a parameter k)
must keep the SSTable count at k& or below. Subject to that
constraint, its goal is to minimize the write amplification,
which is defined to be the total number of bytes written in
creating SSTables, divided by Y, /;, the sum of the lengths
of the n MemTable flushes. (Write amplification is a standard
measure in LSM systems [27], [28], [32], [25].)

For intuition, consider the example k£ = 2 and ¢; = 1 uni-
formly for ¢ € {1,2,...,n}. The optimal write amplification
is O(v/n).

Next is the precise formal definition, as illustrated in Fig-
ure 1(a):

Problem 1 (k-Stack-Based LSM Merge): A problem in-
stance is an £ € R"}. For each t € {1,...,n}, say flush t has
(flush) length (. A solution is a sequence o = {01,...,0,},
called a schedule, where each oy is a partition of {1,2,... ¢}
into at most k parts, each called an SS7able, such that o, is re-
fined by? oy _1U{{t}} (if t > 2). The length of any SSTable F’
is defined to be ((F) =}, {; — the sum of the lengths of
the flushes that comprise F'. The goal is to minimize o’s write
amplification, defined as W (o) = >, 6(oy,00-1)/> 11 b1
where §(0v,01-1) = Y peyo, , () is the sum of the
lengths of the new SSTables created during the merge at time
t.

Formally, a (bounded-depth) stack-based merge policy is
a function P mapping each problem instance £ € R’ to a
solution o. In practice, the policy must be online, meaning that
its choice of merge at time ¢ depends only on the flush lengths
£y,0y, ..., ¢ seen so far. Because future flush lengths are
unknown, no online policy P can achieve minimum possible
write amplification for every input . Among possible metrics
for analyzing such a policy P, the focus here is on worst-case
write amplification: the maximum, over all inputs £ € R} of
length n, of the write amplification that P yields on the input.
Formally, this is the function n — max{W (P({)) : £ € R }.

Updates and Deletes: The formal definitions above ig-
nore the effects of key UPDATEs and DELETES. While it would
not be hard to extend the definition to model them, for de-
signing policies that minimize worst-case write amplification,
this is unnecessary: these operations only decrease the write
amplification for a given input and schedule, so any online
policy in the restricted model above can easily be modified to
achieve the same worst-case write amplification, even in the
presence of UPDATES and DELETES.

Additional terminology: Recall that a policy is stable if,
for every input, it maintains the following invariant at all times

2Each part in oy is the union of some parts in oz—1 U {{t}}.

among the current SSTables: the WRITE times of all items in
any given SSTable precede those of all items in every newer
SSTuble. (Formally, every SSTable created is of the form {4, i+
1,...,7} for some i, j.) As discussed previously, this can
speed up READs. We note without proof that any unstable
solution can be made stable while at most doubling the write
amplification. Likewise, each uniform input has an optimal
stable solution. All policies tested here are stable.

A policy is eager if, for every input ¢, for every time ¢, the
policy creates just one new SSTable (necessarily including the
MemTable flushed at time t). Every input has an optimal eager
solution, and all policies tested here except for EXPLORING
are eager.

An online policy is static if each o, is determined solely
by k and t. In a static policy, the merge at each time ¢
is predetermined — for example, for ¢ = 1 merge just the
flushed MemTable, for ¢ = 2 merge the MemTable with
the top SSTable, and so on — independent of the flush
lengths ¢4, 5, ... The MINLATENCY and BINOMIAL policies
are static. Static policies ignore the flush lengths, so it may
seem counter-intuitive that static policies can achieve optimum
worst-case write amplification.

B. MinLatency and Binomial

Among bounded-depth stack-based policies, MINLATENCY
and BINOMIAL, by design, have the minimum possible worst-
case write amplification. Their design is based on the following
relationship between schedules and binary search trees.

Fix any k-Stack-based LSM Merge instance ¢ =
(¢1,...,4,). Consider any eager, stable schedule o for ¢. (So
o creates just one new SSTable at each time ¢.) Define the
(rooted) merge forest F for o as follows: fort =1,2,...,n,
represent the new SSTable F; that o creates at time ¢ by a
new node ¢ in F, and, for each SSTable F; (if any) that is
merged in creating F}, make node ¢ the parent of the node s
that represents Fj.

Next, create the binary search tree T' for o from F as
follows. Order the roots of F in decreasing order (decreasing
creation-time t). For each node in F, order its children
likewise. Then let T' = T'(0) be the standard left-child, right-
sibling binary tree representation of F. That is, 7" and F have
the same vertex set {1,2,...,n}, and, for each node ¢ in T,
the left child of ¢ in T is the first (oldest) child of ¢ in F (if
any), while the right child of ¢ in T is the right (next oldest)
sibling of ¢ in F (if any; here we consider the roots to be
siblings). It turns out that (because o is stable) the nodes of
T must be in search-tree order (each node is larger than those
in its left subtree and smaller than those in its right subtree).
Figures 1(a) and 1(c) give an example.

What about the depth constraint on o, and its write ampli-
fication? Recall that the stack (merge) depth of a node t is the
number of ancestors that are smaller (larger) than ¢t. While the
details are out of scope here, the following holds:

For any eager, stable schedule o:

1) o obeys the depth constraint if and only if every node
in T'(o) has stack depth at most k — 1,

Q@@

@’@@

t | SSTables at time ¢ bytes written S?(Tlill?tle t 6_162 bs la b5 Lo t b be ls ba b5 Lo
1oy ={1} 0 1 1|® 1

2|02 ={1},{2} 2 2 2|1@) 2 @

3|03 ={1},{2,3} Uy + U3 2 31112 ® 3

4oy ={1},{2,3},{4} 4 3 4|1]2 3|@ 1 e—®
5/05=1{1,2,3,4,5} O+l +l+0+0s 1 511 2 3 4% 5

6|06 ={1,2,3,4,5},{6} (s 2 6[1 2 3 4 5|0 Géi@
(a) (b) (©)

Fig. 1: (a) An eager, stable schedule o (n = 6, k = 3). (b) A graphical representation of o. Each shaded rectangle is an SSTable (over time). Row ¢ is the

stack at time ¢. (¢) The binary-search-tree representation of o.

2) the write amplification incurred by o on { equals
>4, (mergedepth(¢,T'(0))+1)4;

Z?:l [

The mapping 0 — T(o) is invertible. Hence, any binary
search tree t with nodes {1,2,...,n}, maximum stack depth
k—1, and maximum merge depth m—1 yields a bounded-depth
schedule o (such that T(c) = t), having write amplification
at most m on any input £ € RY}.

Rationale for MinLatency: MINLATENCY uses this ob-
servation to produce its schedule [6]. First consider the case
that n = ("™7*) — 1 for some integer m. Among the binary
search trees on nodes {1,2,...,n}, there is a unique tree with
maximum stack depth £ —1 and maximum merge depth m —1.
Let 7*(m, k) denote this tree, and let o*(m, k) denote the
corresponding schedule.

MINLATENCY is designed to output o*(m, k) for any input
of length n. Since 7*(m, k) has maximum merge depth m —1,
as discussed above, o*(m, k) has write amplification at most
m, which by calculation is

(1+O(1/k)) kn''* /ey, (1)

where ¢ = (k + 1)/(k!)'/* € [2,¢]. This bound extends to
arbitrary n, so MINLATENCY’s worst-case write amplification
is at most (1).

This is optimal, in the following sense: for every € > 0
and large n, no stack-based policy achieves worst-case write-
amplification less than (1 — €)kn'/*/c;. This is shown by
using the bijection described above to bound the minimum
possible write amplification for uniform inputs.

Binomial and the small-n and large-n regimes: As men-
tioned previously, because MINLATENCY and BIGTABLE are
lazy, they produce schedules whose average SSTable count is
close to k. When n is large, any policy with near-optimal write
amplification must do this. Specifically, in what we call the
large-n regime — after the number of flushes exceeds 4% or
so — any schedule with near-optimal write amplification (e.g.,
for uniform ¢) must have average SSTable count near k. In
this regime, BINOMIAL behaves similarly to MINLATENCY.
Consequently, in this regime, BINOMIAL still has minimum
worst-case write amplification.

However, in what we call the small-n regime — until the
number of flushes n reaches 4* — it is possible to achieve
near-optimal write-amplification while keeping the average
SSTable count somewhat smaller. BINOMIAL is designed to

< 1+ max}*; mergedepth(t, T(0)).

do this [6]. In the small-n regime, it produces the schedule o
for the tree 7*(m,m), for which the maximum stack depth
and maximum merge depth are both m = log,(n)/2, so
BINOMIAL’s average SSTable count and write amplification
are about log,(n)/2, which is at most & (in this regime) and
can be less. Consequently, in the small-n regime, BINOMIAL
can opportunistically achieve average SSTable count well
below k. In this way it compares well to EXPLORING, and
it behaves well even with unbounded depth (k = o0).

V. EXPERIMENTAL EVALUATION
A. Test Platform: AsterixDB

Apache AsterixDB [13], [15] is a full-function, open-source
Big Data Management System (BDMS). It has a shared-
nothing architecture, with each node in an AsterixDB cluster
managing one or more storage and index partitions for its
datasets based on LSM storage. Each node uses its memory
for a mix of storing MemTables of active datasets, buffering
of file pages as they are accessed, and other memory-intensive
operations. AsterixDB represents each SSTable as a B -tree,
where the number of keys at each internal node is roughly the
configured page size divided by the key size. (Internal nodes
store keys but not values.) Secondary indexing is also available
using BT-trees, R-trees, and/or inverted indexes [23]. As
secondary indexing is out of the scope of this paper, our
experiments involve only primary indexes.

AsterixDB provides data feeds for rapid ingestion of
data [36]. A feed adapter handles establishing the connection
with a data source, as well as receiving, parsing and translating
data from the data source into ADM objects [13] to be stored
in AsterixDB. Several built-in feed adapters available for
retrieving data from network sockets, local file system, or from
applications like Twitter and RSS.

B. Experimental Setup

The experiments were performed on a machine with an
Intel i3—4330 CPU running CentOS 7 with 8 GB of RAM
and two mirrored (RAID 1) 1 TB hard drives. AsterixDB was
configured to use 1 node controller, so all records are stored
on the same disk location. The relatively small RAM size
of 8 GB limits caching, to better simulate large workloads.
The MemTable capacity was configured at 4 MB. The small
MemTable capacity increases the flush rate to better simulate
longer runs.

The workload was generated using the Yahoo! Cloud Serv-
ing Benchmark (YCSB) [17], [18], with default parameters.
The full workload consists of 80,000,000 WRITES, each writing
one record with a primary key of 5 to 23 bytes plus 10
attributes of 100 bytes each, giving 11 attributes of about 1
KB total length. Each primary key is a string with a 4-byte
prefix and a long integer (as a string).

To achieve high ingestion rate, we implemented a YCSB
database-interface layer using the AsterixDB “socket_adapter”
data feed (which retrieves data from a network socket) with an
upsert data model, so that records are written lazily (without a
duplicate key check). Upsert in AsterixDB is the equivalent of
standard insert in other NoSQL systems, where, if an inserted
record conflicts in the primary key with an existing record, it
overwrites it.

The MemTable flushes were triggered by AsterixDB when
the MemTable was near capacity, so the input ¢ generated by
the workload was nearly uniform, with each flush length ¢,
about 4 MB. This represents about 3,300 records per flush, so
the input size n — the total number of flushes in the run —
was just over 24, 000.

For each of the five merge policies tested, and for each
k€ {3,4,5,6,7,8,10}, we executed a single run testing that
policy, configured with that depth (SSTable count) limit ..
All other policy parameters were set to their default values
(see Section IIT). Each of the 35 runs started from an empty
instance, then inserted all records of the workload into the
database, generating just over 24,000 flushes for the merge
policy.

For k = 3, some policies had significantly large write
amplification and so did not finish the run. BINOMIAL and
MINLATENCY finished in about 16 hours, but BIGTABLE and
EXPLORING ingested less than 40% of the records after two
days, so were terminated early. Similarly, CONSTANT was
terminated early in all of its runs.

As our focus is on write amplification, which is not af-
fected by READs, the workload contains no READs (but see
Section V-D).

The data for all 35 runs is tabulated in Appendix A.

C. Policy Comparison (Write Amplification)

At any given time ¢ during a run, define the write amplifica-
tion (so far) to be the total number of bytes written to create
SSTables so far divided by the number of bytes flushed so
far (ZZ=1 £,). This section illustrates how write amplification
grows over time during the runs for the various policies. We
focus on the runs with k& € {5,6, 7}, which are particularly
informative. The runs for each k are shown in Figures 2a—
2c, each showing how the write amplification grows over the
course of all n ~ 24,000 flushes. Because workloads with
at most a few thousand flushes are likely to be important in
practice, Figures 2d-2f repeat the plots, zooming in to focus
on just the first 2,000 flushes (n = 2,000).

In interpreting the plots, note that the caption of each
subfigure shows the threshold 4*. The small-n regime lasts
until the number of flushes passes this threshold, whence the

large-n regime begins. Note that (depending on n and k),
some runs lie entirely within the small-n regime (n < 4%),
some show the transition, and in the rest (with n > 4F) the
small-n regime is too small to be seen clearly. In all cases, the
results depend on the regime as follows. During the small-n
regime, MINLATENCY has smallest write amplification, with
BINOMIAL, BIGTABLE, and then EXPLORING close behind.
As the large-n regime begins, MINLATENCY and BINOMIAL
become indistinguishable. Their write amplification at time
t grows sub-linearly (proportionally to ¢!/¥), while those of
BIGTABLE and EXPLORING grow linearly (proportionally to
t). These results are consistent with the analytical predictions
from the theoretical model [6],

D. Policy Comparison (SSTable count)

As noted previously, MINLATENCY and BIGTABLE, being
lazy, tend to keep the SSTable count near its limit k. In
the large-n regime, a